FINAL TECHNICAL REPORT
ROBOT WELDING PROCESS CONTROL DEVELOPMENT TASK

9 May 1991 through 8 May 1992
Contract Number NAS8-36955
Delivery Order #120

—
W
@
D (7]
A
x g
Prepared for: z =)
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
¥ >
Qv
Z QX
-
S-%a
19 October 1992 Wz o
E M
- a. O
OO0 0
XD wd A~
O w []
> >
b 6F'c
y }Arq s
NN
N\
. NerzLo
Peter L. Romine S8rk
o <
[S N7, BN« 4B 4
(I
< U)o
Vo TN
S0 C >
& o - O
w Q. U e~

Electrical and Computer Engineering Department
The University of Alabama in Huntsville
Huntsviile, Alabama 35899

0142858

G3/37

m,,, Report Documantation Page

LB AT EON
‘. Repont No. 2. Government Accession NO. ' 3. Recipient's Cataiog No.
|
4. Title ana Subtitie 5. Report Qats
Dec 1992

Robot Welding Process Control Development Task

6. Perfarming Qrganizanon Code

7. Authorts) 8. éedonm’ng QOrganizsuon Report No.

Peter L. Romine

* 10. Work Unit Na.

3. Performing Organzavon Name ana Address

University of Alabama in Huntsville 11. Contract or Grant No.
Electrical and Computer Engineering Department NAS8-36955 DO #120
Huntsville, AL 35899

' 13. Type of Report ana Period- Caverea-

"2. Soonsonng Agency Name and Address Final Technical
National Aeronautics and Space Administration May 1992
Washington, D.C. 20546-0001 14. Sponsonng Agency Code

George C. Marshall Space Flight Center

i 15. Suppismentary Notss

i6. Abstract

The final technical report for the period 9 May 1991 tiwrough 8 May 1992,

17. Key Words (Suggested by Authoris)) i 18. Distribution Statement
I
! Unclassified
1 i
l B
'9. Security Classri. (of this report) 1 20. Secumy Clasmt. (of this page : 21. No. of pages 22. Price
Unclassified : Unclassified / ‘I 33 :
] !

NASA FORM 1628 OCT 28 /1

TABLE OF CONTENTS

CHAPTFER PAGE

(V8]

1.0 Introduction

2.0 Software Developments. 4
2.1 Introduction 4
2.2 User Interface : 5
2.3 Cyro Tape Development . 6
2.4 Heurikon Vision Software 7
3.0 Hardware Developments. 8
3.1 CYRO Air-conditioning . : : : : : .8
3.2 CYRO Tape Switch : . : . . : . 8
4.0 Welding Process Measurement and Control Systems : : -9
4.1 MIDSOUTH Model-based System : . . : .9
4.2 INTA Laser Seam Tracker : .9
5.0 Conclusions and Recommendations . . : : : . 10
APPENDIX PAGE
A. CYRO Boot and TUS8 Software Listings . . : : 12
B. New PC Menu Listing. : . . : . . .27
C. HEURIKON Software Listings . . X } . . 30

1.0 INTRODUCTION

This report documents the completion of, and improvements made to, the
software developed during 1990 for program maintenance on the PC and HEURIKON
and transfer to the CYRO, and integration of the Rocketdyne vision software with the
CYRO. The new programs have been used successfully by NASA, Rocketdyne, and
UAH technicians and engineers to create, modify, upload, download, and control CYRO

NC programs.

2.0 SOFTWARE DEVELOPMENTS

2.1 Introduction

Software development was concentrated in three areas:

+ Improve user interface for easy use by persons not experienced in computer
operation.

« Simplify the software cycle for new CYRO executive tapes to eliminate the need
to travel between three sites with magnetic tapes.

» Modification of Rocketdyne vision software to use the HEURIKON senal port to
send offsets to the CYRO through its serial port.

The approach in all software development s to start development on the PC, and carry
this development on the PC as long as possible. This is desirable due to the superiority of
available editors, compilers, debug tools, and development utilities for the PC that are
not available or are very costly on the HEURIKON or similar system. Further, work can
be accomplished at any site with a PC; this is especially important considering the harsh
working environment of the Building 4705 highbay.

The programs are designed to be easily ported from one machine environment to
another. Once a program is operating properly on the PC it is then transferred to the
HEURIKON.

2.2 User Interface

The software developed in 1990 required the operator to remember the name and
proper usage of six to ten programs. It was quickly discovered, during training sessions,
that this was not acceptable, considering the diversity of the users and the potentially
long period of time between uses of the software.

A new menu-driven user interface, Figure 1, was developed to go on top of the
existing robot communication and control software. The menu is built from the batch
processing commands that are a standard part of DOS on the PC and translatable to the

shell commands available on the HEURIKON.

CYRO-PC MENU

A Directory of programs on PC disk

B Directory of programs on CYRO

C Recomnect PC to CYRO

D List a NC program on the PC

E Save a program FROM CYRO TO PC
F Load a program TO CYRO FROM PC
G RUN program loaded on the CYRO
H HALT a program running on CYRO

I Edit program on PC using MS WORD
J Edit program on PC using Q-EDIT

K Send program listing to printer

L Resequence program on PC

DEFAULT DIRECTORY NCYRO]

Enter a letter from Ato L
{or type Esc to quit)

Figure 1. New user interface menu.

The new user interface is now the preferred way NC programs are maintained and

loaded to the CYRO.

2.3 CYRO Tape Development

The previous software development cvcle for new CYRO executive tapes allowed
the programmer to edit and compile the CYRO program remotely using the network.
However, it was necessary to then physically transfer, via magnetic tape, the new
executable to a third machine equipped to write the new executive tape on a TUS8 data
cartridge. This process discouraged development of new executive tapes. New programs
were developed to streamline the development cycle.

The problem was solved by developing two programs, BOOTCYRO.EXE and
MAKETAPE EXE. Through research into the structure of the PDP11/23 boot image and
TUS58 tape drive, the BOOTCYRO program was developed to boot the CYRO directly
from a captured boot image file via the PC. With the CYRO seriai card setto 38.4 K
BAUD, the time required to boot the CYRO was lowered from the 120 seconds required
by tape to 20 seconds with the PC.

The initial version of the program required an input file captured from an existing
executive tape. Later versions were developed to accept the SEN.TSK file directly as
generated by the SCATS compiler. The BOOTCYRO program now allows a
programmer to modify the CYRO program, compile and link to create a new . TSK file,
transfer the . TSK file over the network to the PC or HEURIKON, and boot the CYRO
with the new executive program, all without leaving the CYRO workcell in building
4705.

The MAKETAPE program was developed to support writing of TUS58 tapes via
the PC or HEURIKON, using the TU58 tape drive built into the CYRO. This program
can take the raw . TSK file and create a new executive tape or it can make a copy of an
existing TU58 tape. This program also eliminates the need for the RT11UTL,
EXCHANGE, and ZAPTUS58 programs in the development cycle.

2.4 HEURIKON Vision Software

Software was developed by Rocketdyne in California, to accept images of the
weld path gathered by a camera mounted in the torch, perform image processing on the
tmages to detect the seam, and then send offsets to the robot in order to track the seam.
The system was developed and demonstrated to work in California on a similar
HEURIKON computer system with a different robot. It is desired to adapt this software
to operate on the HEURIKON computer at MSFC with the CYRO robot in building
4705.

In discussions with Dave Gutow of Rocketdyne Canoga Park, it was determined
that the special communications between the vision software on the HEURIKON and the
CYRO is best handled in the SENCON.C program file. Dave Gutow designed his
software to use a shared data structure and the functions in SENCON.C were written
with provision for the requirements at MSFC.

In Canoga Park, a seperate processor card communicates with the robot and
updates the shared data structure. At MSFC, a software process running under UNIX has
been developed to communicate with the CYRO and alter the data structure as

appropnate.

3.0 HARDWARE DEVELOPMENTS

J.1 CYRO Air-conditioning

The extreme heat generated in the HEURIKON cabinet, worsened by the high
temperatures experienced in the un air-conditioned CYRO work cell, resulted in a disk
crash in July 1991. Several months were required to rebuild the system. A dedicated air-
conditioner was installed on the HEURIKON cabinet to prevent future crashes and

prolong the life of the HEURIKONSs components.

3.2 CYRO Tape Switch

A rotary switch was added to the CYRO front panel to simplify the connections
between the PC/HEURIKON, CYRO TU58, and CYRO Senial Port. The knob has three
positions to allow the CYRO to boot from tape, boot from an external device, or connect

external device to the TUS8.

4.0 WELDING PROCESS MEASUREMENT AND CONTROL
SYSTEMS

4.1 MIDSOUTH Model-Based System

The MIDSOUTH was delivered and demonstrated. The system contains an
80286 processor board, 80386 processor board, data acquisition, and signal conditioning
hardware in a VME cardcage. The process monitoring and control software is written in
C to operate under Microsoft windows.

Basic operation of the system was verified to assist in evaluation of the possible

applications of the system, as-is or as a parts platform for other projects.

4.2 INTA Laser Seam Tracker

The INTA laser seam tracker was delivered in pieces, non-operational, and with
limited documentation. Inaccuracies in the wiring diagrams were discovered during the
re-connection of the units.

The MIDSOUTH system was used to download the INTA software to the 68030
processor; this requires 2 to 3 minutes. A BIT3 interface card was included but requires
a 16-bit ISA slot. The BIT3 card is claimed to complete a download in 15 seconds.

The INTA system detects the seam by measuring scatter laser light. The light is
applied to the work-piece by reflecting a laser beam emitted from a fiber optic cable. A
semiconductor laser is connected to a lens/collimator assembly by the fiber optic cable.
The lens assembly includes a pinhole which must be precisely aligned to allow the laser
light to pass through. This alignment was disturbed in shipping or during assembly and
several weeks were required to realign it.

After realignment, the system was checked-out and it operated as described in the

documentation,

5.0 CONCLUSIONS AND RECOMMENDATIONS

The PC version of the new NC development software has been used by most of
the CYRO users. The HEURIKON version has not been warmly received due to the
greater complexity in operating the HEURIKON and the unfamiliar vi editor.

The arrival of the new robots and welding controllers has prompted a reevaluation
of the focus and role of the CYRO and HEURIKON in the NASA mission. The welding
controller originally planned for the CYRO has now been teamed with a more modemn
robot arm. The serial communications interface of the CYRO and HEURIKON is now
very robust and well understood. Electricaily, the CYRO and/or HEURIKON can now
be easily connected to any of the new robot or welding controllers. The age of the
HEURIKON technology is now an important consideration in its role with welding
process control. However, the VME-based construction of the HEURIKON will support
upgrades to faster processors and peripherals, well into the future.

The vision system changes are still to be tested. A compatibility problem with
the compiler and configuration and/or hardware problems with the VRTX processor have
hampered this development. Progress with the vision system was severly hampered due
to the lack of modem software development tools.

The HEURIKON, MIDSOUTH, and INTA a three separate systems that have
never been fully functional. The HEURIKON system software is out of date and lacking.
Both the HEURIKON and INTA have powerful and reusable hardware. The INTA
system does not have a disk or operating system. Combining the HEURIKON and INTA
hardware and adding modem, up to date software tools would make for a very powerful
system for welding process control.

The PC nature of the MIDSOUTH system makes for a powerful software
development platform. However, the VME based hardware has not proven ideal

combination to the point.
10

Due to the relatively slow rates encountered in the welding process, the serial
interfaces common to the CYRO, HEURIKON, MIDSOUTH, INTA, and new robot, are
sufficient. As the need arises for higher speed communications, high speed interface

cards such as those made by BIT3 will work.

11

APPENDICES

APPENDIX A

CYRO BOOT and TUS8 Software Listings

11

/* BOOTCYRO.C --- Program to boot the CYRO750 ROBOT from a .TSK image file*/

/* Written by Peter L. Romine 1990,91

bl University of Alabama, Huntsville

A Zlectrical and Computer Engineering Department
</

#1nciude "cyro.h"

#pragma check _stack (off) _

static CYRO msg;

UCHAR

blk0(]={176,0,225,121,0,0,254,118,192,101,30,0,1,148,3,3,247,¢,6,0,251,1,5,0,0,0, 95, 144

,118,255,223,139,11¢,255,253,128,135,0};
UCHAR blké[]={1,0,0,0,1,0,0,0,8,0,0,4,225,121,0,0,254,118,110,0,0,0,179,7,0,2,8,
%,0,0,0,0,138,1,0,0,0,0,0,8};
$define DATASIZ 60000
static UCHAR data (DATASIZ]:
long data_ptr,data_len;
int pkt=0;
struct
{
UCHAR flag;
UCHAR len;
UCHAR opcode:
UCHAR modifier;
UCHAR unit;
UCHAR switches;
UCHAR seq_lo;
UCHAR seq_hi;
UCHAR cnt_lo;
UCHAR cnt_hi;
UCHAR blk leo:
UCHAR blk hi;
UCHAR chk_lo;
UCHAR chk_hi;
} emd_pkt:
struct
{
UCHAR flag;
UCHAR len;
UCHAR data[128};
UCHAR chk_lo;
UCHAR chk_hi;
] data_pkt:

int main(int argc,char **argv)

{
int blk_strt,blk_end;
FILE *fp, *£fp0;
long byte_cnt,i;
UCHAR chk_1, chk h;
long lobyte, hibyte;
long chk, a=0,b=0, ¢c=0;

connect_serial (COMM2,RESTORE ON_EXIT):
if(! (fp = fopen(argvil}), "rb%)))
exit(1i);

for(i=0; i<DATASIZ; i++) data{i] = 0O;

printf("Rd 0 %d\n",a=fread(data,l,(size_t)1024,fp)):

fp0 = fopen("tuS8_4.cln", "rb");

printf("Rd 1 3d\n",a=fread(data,l, (size_t)2048, fp0}};

printf("Rd 2 %d\n",b-fread(&(data[2048]),l,(size_t)30720,fp)); /* rd blk
printf("Rd 3 %d\n",c=fread(&(data[32768]),l,(size_t)30720,fp)); /* rd blk
fclose(£fp0);

data_ptr = OL;

data_len = a + b + c;

printf ("BUFFER SIZE = 1d\n", data_len);

printf("\nWaiting for INIT from CYRO\n"):; while(s_getch2() != 0x04);
while(s_getch2() != 0x04);

§_putch2 (0x10); /* send continue */

/* get command to read block 0 */

get_command();

print_command();

printf("\nSending block 0 to CYRO\n"); /* Send block 0 */
send_data();

/* get command to read block 6 */

get_command()

PRECEDING PAGE L

0 */
g8 */

12

AMNK NOT

FILMEL

print_command();

printf("\nSending dir to CYRO\n"); /* Send block & */

send_data(};

/* get command to read block 8 */

get_command() ;

print_command(};

printf("\nSending Program to CYRO\n"):

/* Send block 8a */

send data();

printf("\nTransmission to CYRO complete!\n"};
}

print_command(}
{
printf("%d 3d td 3d 3d id %d *d *d *d 'd ¥d id id\n", cmd_pkt.flag

;cmd_pkt.len
,cmd_pkt.opcode
,cmd_pkt.modifier
,Cmd_pkt.unit
;cmd_pkt.switches
,cmd_pkt.seq_lo
,cmd_pkt.seq hi
,cmd _pkt.cnt lo
,cmd pkt.cnt hl
,emd_pkt.blk lo
,cmd_pkt.blk hi
,cmad_pkt.chk lo
.cmd_pkt.chk hl).

}

get_command ()
{

cmd_pkt.flag = s_getch2{);
cmd_pkt.len = s_getch2();
cmd _pkt.opcode = s_getch2{);
cmd pkt.modifier = s5_getch2{();
cmd_pkt.unit = s_getch2(};
cmd_pkt.switches = s_getch2(});
cmd_pkt.seq_lo = s_getch2()};
cmd pkt.seq hi = s_getch2();
cmd_pkt.cnt lo = s_getch2();
cmd_pkt.cnt_hi = s_getch2();
cmd_pkt.blk lo = s_getch2{();
cmd_pkt.blk_hi = s_getch2();
emd_pkt.chk_lo = s_getch2();

cmd_pkt. chk_hl s_getch2(});

}

send_data()

(
long blk_strt,blk end, i;
long byte cnt;
UCHAR chk_l,chk_h;
long lobyte, hibyte;
unsigned long chk;

byte_cnt = 256L*(long) (cmd_pkt.cnt _hi} + {(long) (cmd_pkt.cnt_lo);
while(byte cnt)
{
s_putch2 (1)
s_putch2(128);
chk = 128L*256L + 1L;
blk_strt = data ptr;
blk ._end = blk_strt + 128L;
for(i=blk_strt; i<blk_end; i+=2L)
{
s_putch2(data(i}l);
s_putch2 (data[i+l]);
chk += (unsigned long)data(i]
+ {unsigned long) (256L*(unsigned long)data[i+l]):
if({ chk > OxffffL)
chk -= OxffffL;
}
chk_h = (UCHAR) (chk/256L);
chk_l = (UCHAR) {chk - ((unsigned long)chk h * 256L));
s_putch2(chk_1);
s_putch2(chk_h);

byte cnt -= 128L;
data_ptr += 128L;
pktt+;
if(! (pktsl0))
printf{"Packet %d\r",pkt);

}
chk = 2626L;
chk += (unsigned long) (emd_pkt.cnt_lo)
+ (unsigned long) (256L*(unsigned long) (cmd_pkt.cnt_hi))};
1f{ chk > OxffffL)
chk -= OxffffyL;
chk _h = (UCHAR) (chk/256L);
chk_1 = (UCHAR) (chk - ({unsigned long)chk_h * 256L));
s_putch2(2);
s_putch2 (10):
s_putch2(64};
s_putch2(0);
s_putch2(0);
s_putch2{0);
s_putch2(0);
s_putch2(0);
s_putch2(cmd_pkt.cnt_lo);
s_putch2{cmd_pkt.cnt_hi):
s_putch2 (0} ;
s_putch2(0);
3_putch2(chk_1);
s_putch2({chk h);

14

i* CAPTURE.C -—~ Program to capture the data loaded into the CYRO750 ROBOT during */
* a boot from tape*/

/* Written by Peter L. Romine 1990,91

*x University of’ Alabama, Huntsville

** Electrical and Computer Engineering Department
*/

#nclude "cyro.h"
#pragma check_stack (off)
FILE *#p;

int s_getc2(void)

{
while(linp_cnt2())
if{ kbhit())
|

felose(fp);
exit(1);
}

return inp_char2(),

int main(int argc,char **argy)
{
connect_serial(COMM2,RESTORE_ON_EXIT);

#{ 1(fp = fopen(argv[1],"wb"))

{
perror(argv(1]);
exit(1),

}

while(1)
fputc(s_getc2(),fp);

15

/* MAKETAPE.C --- Program to create a new executive tape using the TUS58 drive */
built into the CYRO750 ROBOT */

/* Written by Peter L. Romine 1990,91
x> University of Alabama, Huntsville
** Electrical and Computer Engineering Department

%
#include "cyro.h"

#pragma check stack (off)
static CYRO msg;

f#idefine DATASIZ 60000

static UCHAR data{DATASIZ];

long data_ptr,data_len;

int pkt=0;

struct

{
UCHAR flag;
UCHARlen;
UCHAR opcode;
UCHAR modifier:
UCHAR unit;
UCHAR switches;
UCHAR seq lo;
UCHAR seq_hi;
UCHAR cnt_lo;
UCHAR cnt_hi;
UCHAR blk_lo;
UCHARDblk_hi;
UCHAR chk _lo;
UCHAR chk_hi;

} cmd_pkt;

UCHAR flag;
UCHAR len;
UCHAR data[128];
UCHARchk lo;
UCHAR chk_hi;

} data_pkt;

int main(int argc,char **argv)

§
i

nt bik_strt,blk _end,ch;,
FILE *fp,*f0;
long byte cnt,i;

UCHAR chk_|,chk hs;
long lobyte hibyte;
long chk.a=0,b=0,c=0;
UCHARcnt_lLcnt h;

connect_serniall COMM2 RESTORE_ON_EXIT);

if{ /(fp = fopen(argv{1],"rb")))
exit(1),

/* Initialize the data array to all 0's */
for(i=0; i<DATASIZ; i++)
datali] = 0;

/* Skip over st 1024 bytes of .tsk image */
printf{"Rd 0 %d\n",a=fread(data. 1,(size_t)1024.fp));

/* Read st 2048 bytes from a .cIn file */

fp0 = fopen("tu58 4.cin","rb");

primf("Rd %d\n",a=fread(data, 1 (size_t)2048 fp0));
fclose(fp0);

/* Read the program from the .tsk file */

printf{"Rd %d\n" b=fread(&(data[2048]),1,(size_t)30720,fp)); /* rd prt 1 */
printf{"Rd %d ",c=fread(&(data{32768]),1,(size_t)30720,fp))/* rd prt 2 */
fclose(fp),

data ptr=0L;
data_len=a+b +¢;
print "BUFFER SIZE = %ld\n" data_len);

/* Send a break to the TU58
printf{*Sending BREAKS to TU58\n");
send_break2();

send_break2(),

send_break2();

*f

printf{" Sending INITs to TU58\n"),

s_putch2(0x04);

5_putch2(0x04);

/* wait for CONTINUE from TUSS8 */

while((ch=s_getch2()) '= 0x10)
printf{"%d " ch);

/* Command Packet to write Block 0 */
cmd_pktflag = 0x02;
cmd_pkt.len = 0x0a;
cmd_pkt.opcode = 0x03;
cmd_pkt.modifier = 0x00;
cemd_pktunit = 0x00;
cmd_pkt.switches = 0x00;
cmd_pkt.seq lo = 0x00;
cmd_pkt.seq hi = 0x00;
cmd pkt.ent_lo = 0x00;
cmd_pkt.ent hi = 0x02;
cmd_pkt.blk lo = 0x00;
cmd_pkt.blk_hi = 0x00;

send_command(),

printf{"\nWriting BLOCK 0 to TUS58\n");
write_data(512L),

get_command();

print{"OPCODE = %d\n" (int)cmd_pkt.opcode);

printf{"Success Code = %d\n" (int}emd_pkt modifier);

primtf{"BYTE Count = %ld\n",256L*(long)(cmd _pkt.cnt_hi) + (longcmd pkt.cnt_io));
primf{("STATUS = %d %d\n",(int}emd_pkt.blk_lo,(int)cmd _pkt.blk_hi),

cmd_pkt.flag = 0x02;
cmd_pkt.len = OxOa;
cmd_pkt.opcode = 0x03,
cmd_pkt.modifier = 0x00;
cmd_pkt.unit = 0x00;
cmd_pkt.switches = 0x00;
cmd_pkt.seq lo = 0x00;
cmd_pkt.seq hi = 0x00;
cmd_pkt.cnt lo = 0x00;
cmd_pkt.cnt_hi = 0x04;
cmd_pkt.blk_lo = 0x06;
cmd_pkt.blkk_hi = 0x00:;

send_command();

pnntf{"\nWriting BLOCK 6 to TUS8\n");

write_data(1024L);

get_command();

printf{”Success Code = %d\n" (int)emd |_pkt.modifier);

printR"BYTE Count = %ld\n",256L*(long)(cmd_pkt.cat_hi) + (long)cmd _pkt.cat_lo));
pramf("STATUS = %d %d\n" (int)cmd _pkt.blk_lo,(int)cmd_pkt.blk_hi);

/* send WRITE command */

data_len -= 1536L;

cnt_h = (UCHAR)(data_len/256L);

c¢mt_| = (UCHAR)(data_len - ((unsigned long)cnt_h * 256L));

cmd_pkt.flag = 0x02;
cmd_pkt.len = Ox0a;
cmd_pkt.opcode =0x03;

18

cmd_pkt modifier = 0x00;
cmd pktunit = 0x00:

cmd_pkt.switches = 0x00;
cmd_pkt.seq lo = 0x00;
cmd_pkt.seq hi = 0x00;
cmd_pkt.cnt_lo =cnt |;
cmd_pkt.ent hi = cnt_h;
cmd pktblk lo =0x08;
cmd_pktblk hi = 0x00;

send command();

printf{"\nWriting BLOCK 8 to TUS58\n");

write_data(data_len),

get_command();

printf{"Success Code = %d\n" (int)cmd_pkt. modifier);

pnntf{("BYTE Count = %ld\n" 256L*(long)(cmd _pkt.cnt_hi) + (long)(cmd_pkt.cnt_lo));
prntf{"STATUS = %d %d\n" (int)}emd_pkt.blk_lo,(int)cmd _pkt.blk_hi);

printf{"\nTransmission to TUS8 compiete/\n");
}

get_command()

{
cmd_pkt.flag =s_getch2();
cmd pkt.len =5 _getch2();
cmd_pkt.opcode =3_getch2(),
cmd_pkt.modifier=s_getch2();
cmd_pkt.unit =3_getch2(),
cmd_pkt.switches=s_getch2();
cmd_pkt.seq lo =s_getch2();
cmd_pkt.seq_hi =3_getch2(),
cmd_pkt.ent_lo =s_getch2();
cmd_pkt.cnt_hi =s_getch?();
cmd_pkt.blk fo =5_getch2();
cmd_pkt.bik_hi = s_getch2();
cmd_pkt.chk lo =s_getch2();
cmd_pkt.chk_hi =3_getch2();

}

send_command()

{
unsigned long chk;
UCHAR chk_L,chk_h;

chk = (unsigned long)(cmd_pkt.len)*256L + (unsigned long)cmd _pkt flag;

chk += (unsigned long)(cmd_pkt. modifier)*256L + (unsigned long)emd pkt.opcode;
chk += (unsigned long}(cmd_pkt switches)*256L + (unsigned long)emd _pkt.unit;
chk += (unsigned long)(cmd_pkt.seq_hi)*256L + (unsigned long)cmd_pkt.seq_lo;
chk += (unsigned long)(cmd_pkt.cnt_hiy*256L + (unsigned long)cmd _pkt.cnt_lo;
chk += (unsigned long)(cmd_pkt.blk_hi)*256L + (unsigned long)emd_pkt.bik_lo;
chk_h = (UCHAR)chk/256L);

chk_I = (UCHAR)(chk - (unsigned long)chk_h * 256L));

s_putch2(cmd_pkat.flag);
s_putch2(cmd_pkt.len);
s_putch2(cmd_pkt.opcode);
s_putch2(cmd _pkt.modifier);
s_putchZ(cmd_pkt.unit),
s_putch2(cmd_pkt.switches);
s_putch2(cmd_pkt.seq lo),
s_putch2(cmd_pkt.seq hi);
5_putch2(emd_pkt.cat_lo);
s_putch2(cmd_pkt.cnt_hi);
s_putch2(cmd_pkt.blk_lo);
s_putch2(cmd_pkt.bik_hi);
s_putch2(chk),
s_putch2(chk_h);

}

write_data(byte cnti)
long bwte cnti;

¥
i

long byte_cntblk_strt,blk_end.i;
UCHARchk Lchk hent hent Lc;
long lobyte hibyte;

unsigned long chk;

byte_cnt = byte_cnti;

while(byte_cnt)
{
/* wait for continue */
while((c=3_getch2()) '= 0x10)
putchar(c);

s_putch2(1);
s_putch2(128);

chk = 128L*256L + IL;

bik_strt = data_ptr;
blk_end = blk_strt + 128L,

for(i=blk_strt; i<blk_end; i+=2L)
{
s_putch2(datai});
s_putch2(datafi+1]),

chk += (unsigned long)datai]
+ (unsigned long)(256L*(unsigned long)datafi+1]);
if{ chk > OxfffL)
chk —= OxffHL;
!

chk_h = (UCHAR)chk/256L),
chk_| = (UCHAR)(chk - ((unsigned long)chk_h * 256L));

retum;

s_putch2(chk 1);
s_putch2(chk_h);

byte _cnt -= |28L;
data_ptr += 128L.:

pkit++;
ifi |(pkt%10))

printf{"Packet %d\r" pkt);

21

/* READTAPE.C -— Program to read an executive tape from the CYRO750 ROBOT */

/* Written by Peter L. Romine 199091

b University of Alabama, Huntsviile

ol Electrical and Computer Engineering Department
*

#include "cyro.h"

#pragma check stack (off)
static CYRO msg;
#define DATASIZ 60000

static UCHAR data[DATASIZ];
long data_ptr.data_len;

int pkt=0;

struct

g
3

UCHAR flag;
UCHAR len;
UCHAR opcode:
UCHAR modifier;
UCHAR unit;
UCHAR switches;
UCHAR seq lo;
UCHAR seq_hi;
UCHARcnt lo;
UCHAR cnt_hi;
UCHARDbIk lo;
UCHARDbIk_hi;
UCHAR chk_lo;
UCHAR chk_hi;

} cmd_pkt;

struct

{
UCHAR flag;
UCHAR len;
UCHAR data[128];
UCHARchk_lo;
UCHAR chk_hi;

} data_pkt;

int main(int argc,char **argv)

{

int blk_strt,blk_end;
FILE *fp,*f0;

long byte cnt.i;

UCHAR chk_l,chk hs;

long lobyte, hibyte;

long chk,a=0,b=0,c=0;
UCHARcnt_lcnt_h;

connect_senal(COMM2 RESTORE ON_EXIT);
/* Send command string to read the entire tape contents */

s_putch2(2);
s_putch2(10);
s_putch2(2);
s_putch2(0);
s_putch2(0);
s_putch2(0);
s_putch2(0);
s_putch2(0),
s_putch2(0);
s_putch2(2);
s_putch2(0);
s_putch2(0);
s putch2(4);
s_putch2(12),

while(1)
prnntf{*%d ",s_getch2());

exit(1);

23

/* RESEQ.C —- Program to resequence 2 NC program for the CYRO750 ROBOT */

/* Written by Peter L. Romine 199091
x* University of Alabama, Huntsville
¥ Electrical and Computer Engineering Department

*/

#include <cyro.h>
static char str1{100],str2[100];

main(argc,argv)
int arggc;
char **argy,

FILE *fpin,*fpourt;
char str{80],fname{ 12], numstr{ 7],
int 1,j,num, len;

if{ argc>2)

{
printfi"\nUSAGE: reseqgp file.nc\n");
exit(1);

}

if{ argc=2)
strcpy(fname,argv{1]);
else
{
pritt"\nWHAT PROGRAM NAME ? *);
scanf{"%s" fname);
filush(stdin);
}

if{ I(fpin=fopen(fname, "r")))
{
perror(fname),
exit(1);

)

strepy(strl,"copy ");
strcat(strl, fname);
strcat(strl,"” *);
strcat(stri,fname);
stri{strien(str1)-3] = 0;
strcat(str]," BAK®);
system(strl),

if{ {fpour=fopen("RESEQ$$S. TMP","w")))
{

perror("TMPFILE");

exit(1),

}

mm = }0;

"

while(fgets(str1,90 fpin))
(4
v
spnntf{str,"%d" num);
i num < 100)
strepy(numstr, "N0O");
else iff num < 1000)
strepy(numstr,"NO");
else
strepy(numstr, "N,
strcat(numstr,str);

strcpy(str2, numstr),

len = strlen(str1);

1=0;
while(i <=len)
{
switch(toupper(stri{i]))
{
case \r':
case \n'".
case ')
case "
case 'G":
case L.":
case 'M":
case "W
case'V"
case 'K"
streat(str2,&stri{i]);
i=len+1;
break;
defauit:
i++;
break;
}
}
fputs(str2, fpout);
num += 10;
}
fclose(fpin),
fclose(fpout);
strepy(stri,"copy RESEQ$$$. TMP *);
strcat(strl,fname);
system(strl),

25

APPENDIX B

New PC Menu Listing

@ECHO OFF
REM CYROMENU.BAT --—- DOS batch file to create user menu.

REM Written by Peter L. Romine 199091

REM University of Alabama, Humsville
REM Electrical and Computer Engineering Department
REM

FMARK MENU >NUL

CALL LOADHLP

TOP

sa bright white on blue

cls

ECho +
ECho

ECho CYRO-PC MENU

ECho

ECho A Directory of programs on PC disk
ECho B Directory of programs on CYRO
ECho C Reconnect PC to CYRO

+
;
I
1
I
E
ECho ; D List a NC program on the PC
ECho i E Save a program FROM CYRO TO PC
ECho . F Load a program TO CYRO FROM PC
i
4
1
I
|
!
'
1
i
¥
i
;
|
I
I
I
i
i
i

i
t
1
:
!
i
i
I
|
I Edit program on PC using MS WORD :
1
|
4
i
I
]
I
1
]
1
i
1

ECho G RUN program ioaded on the CYRO
ECho H HALT a program running on CYRO
ECho

ECho J Edit program on PC using Q-EDIT
ECho K Send program listing to printer
ECho L Resequence program on PC

ECho

ECho

ECho DEFAULT DIRECTORY \CYRO]
ECho

ECho Enter a letter from Ato L

ECho (or type Esc to quit)

ECho + +
:START

tick Enter a letter from Ato L

echo .

GETLETR

IF ERRORLEVEL 27 GOTO END

IF ERRORLEVEL 13 GOTO START
IF ERRORLEVEL 12 GOTO LABELL
IF ERRORLEVEL 11 GOTO LABELK
IF ERRORLEVEL 10 GOTO LABELJ
[F ERRORLEVEL 9 GOTO LABELI
IF ERRORLEVEL 8 GOTO LABELH
IF ERRORLEVEL 7 GOTO LABELG
IF ERRORLEVEL 6 GOTO LABELF
IF ERRORLEVEL 5 GOTO LABELE
IF ERRORLEVEL 4 GOTO LABELD
IF ERRORLEVEL 3 GOTO LABELC
[F ERRORLEVEL 2 GOTO LABELB
:LABELA

dir/p * nc

ticker
GOTO TOP
LABELB
dirp

ticker
GOTO TOP
‘LABELC
init

ticker
GOTO TOP
.LABELD
listp

ticker
GOTO TOP
‘LABELE
savep m
ticker
GOTO TOP
‘LABELF
loadp m
ticker
GOTO TOP
‘LABELG
runp m
ticker
GOTO TOP
:LABELH
haltp m
ticker
GOTO TOP
‘LABELI

echo Please Wait while WORD is loaded ...

word
GOTO TOP
:LABELJ

q

GOTO TOP

‘LABELK

printp

GOTO TOP

‘LABELL

reseqp

GOTO TOP

‘END

RELEASE MENU >NUL

28

APPENDIX C

HEURIKON Software Listings

29

/* SENCOM.C module - This module acts as the SENsor CONtroller interface*/
/* for the T3V system. Throughout this module there are IFDEF compirie */
/* switches checking for the switch SEPSC. If this switch is set it */
/* indicates the presence of a seperate sensor controller board as in */

/* Rocketdyne configuration. 1If this switch 15 not set it indicates no */
/* seperate sensor controller board, as in the MSFC configuration. */

/* The routines included are: . */
/* se init - initializes the sensor controller and/or communications */

/* se delta - sends deltas to the the sensor controller or rcbot */
/* se_getsystem - gets all system paramaters from the sensor controller*/

/* se settime - sets the time (if time kept in SENCON module} */
/* se _post - posts a message to the sensor controller */
#include "/usr/system/codes.h”

$include "/usr/system/shared.h”

#include "util.h"

¢include "system.h"

$include "global.h"

extern STATE state; /* current system states */

extern SYSTEM system; /* The current system parameters */
/**i***t*i*t*i**it****f*****i*******ﬁiii******t***i******ii**************/

/* SE_INIT - initializes the sensor controller system. If a seperate */

/* board is present it initializes communications with it. If no */
/* seperate board it starts up the clock and initializes the on board */

/* sensor controller system. */

se_init (se_qid)

int se_gqid; /* Queue ID for messages from sensor controller */
{

4ifdef SEPSC /* Initialize communication if seperate board */
vt_msg {"Initializing Intercard Comm routines...\n", state.debugl);
initcom (se_qid);

¥else /* Initialize communication if same board */
/* Init for MSFC */

init_serial(); /* Initialize the serial console port */
init_cyro(); /* Wait for the CYRO init msg */

fendif

1

/**t**i*i****************************’*********i*********'*i******ii**f**/
/* SE_DELTA - sends a cross seam delta to the robot. Info is sent only */

/* if the control switch is set and the sensor controller data read */
/* switch is set. Two parameters are sent; delta and conf. Delta is */
/* the cross seam error passed as a velocity in units of .001"/sec. */
/* Conf is the calculated confidence in the delta (0 - 100). */
se_delta (delta, conf)

int delta; /* The cross seam error, given as a velocity */

int conf; /* The confidence in the delta */

{
/* Send info only if in control and Sensor Controller data is readable */
if (state.control && state.scread)
{
#ifdef SEPSC /* if we have a sensor controller board... */
T3V_FDBCK->delta = delta;
T3V_FDBCK->confidence = conf;
se_post (T3VDELTA):
felse /* if we don't have a seperate board... */
/* For MSFC, send an override to the CYRO */
se_post(delta);
fendif
)
}

3o

/w
/*
/*

/¥

ﬁti*****t'**'***it'**it**i**i***tii*’*ﬁi***f**ﬁi**i**tﬁ'*******ﬁw/

SE_GETSYSTEM - gets all system data from the sensor controller and */
stores it into the struct SYSTEM. All data is moved at once to */
maintain consistancy and to (in one place) be able to shut off reads */

/* to the sensor controller. Data is only read if the sensor controller*/
/* read switch is set. */
se_getsystem ()
{
§ifdef SEPSC /* If seperate board... */
if (state.scread)
{ /* OK to read from Sensor controller */
system.weldstate = ACTUAL->weldstate;
system.pulsing = PROGRMED-~>pulseonoff;
system.speed = PROGRMED->travel;
system.peakcurr = ACTUAL->p_cur;
system.backcurr = ACTUAL->b cur:
system. hours = TIME->hours;
system.minutes = TIME->mins;
system.secs = TIME->secs;
H
else .
{ /* not OK to read, set values to default */
system.weldstate = WELDOFF;
system.pulsing = FALSE;
system. speed = 0;
system.peakcurr = 0O;
system.backcurr = 0;
system.hours = 0;
system.minutes = 0;
system.secs = 0;
}
felse /* If no seperate board */
/* For MSFC CYRO */

i
§

f {!cyro_locked)
/* OK to read from CYRO structure */

system.weldstate = cyro.weldstate;
system.pulsing = cyro.pulseonoff:
system.speed = cyro.travel;
system.peakcurr = cyro.p_cur;
system.backcurr = cyro.b_cur;
system.hours = Cyro.hours;
system.minutes = Ccyro.mins;
system.secs = Ccyro.secs;
!
else
{ /* not OK to read, set values to default */
system.weldstate = WELDOFF;
system.pulsing = FALSE;
system. speed =0;
system.peakcurr = 0;
system.backcurr = 0;
system.hours = 0;
system.minutes = 0;
system. secs = 0;
}
tendif
}
/Q**ﬁﬁiitii*ﬁit**iﬁi*iii*i&***ﬁiiQ**ii*i*****tiii’*iiiiﬁ*ﬁ'i*ititb*ﬁi****/
/* SE_POST - posts a message to the sensor controller. If the sensor */
/* controller is a seperate board it sends the message via the intercard*/
/* communication system. The message is sent only if the sensor >/
/* controller read switch is set. */
se_post (msg)
int msg: /* The message to post */
{
§1fdef SEPSC /* If seperate board */
if (state.scread) /* Send only if SC Read switch set.*/
post_to_sc (msg);
felse /* If no seperate board */
/* For MSFC, send override msg to CYRO */
cyro_ovride (msg) ;
#endif

}

31

